پیش‌بینی تقاضای روزانه آب شهری با استفاده از شبکه‌های عصبی مصنوعی، مطالعه موردی: شهر تهران

Authors

  • مسعود تابش دانشیار و عضو قطب علمی مهندسی و مدیریت زیرساختها، دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران
  • مهدی دینی عضو هیئت علمی دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد اهر
Abstract:

پیش‌بینی تقاضای آب در سیستم‌های آبرسانی و توزیع آب، با توجه به‌کمک شایانی که می‌تواند به مدیران این مجموعه‌ها برای مدیریت بحران (حداقل و حداکثر مصرف) داشته باشد، از اهمیت بالایی برخودار است. پیچیدگی و تأثیر عوامل و پارامترهای مختلف بر میزان تقاضای آب در این سیستم‌ها، سبب گردیده است که روشهای تحلیلی و ریاضی کارایی لازم را در این زمینه نداشته باشند. در این مقاله روش شبکه‌های عصبی مصنوعی برای برآورد تقاضای روزانه آب شهری تهران به‌کار رفت. پارامترهای هواشناسی مربوط به سه ایستگاه هواشناسی تهران بزرگ به‌روش تیسن وزن‌دهی شده و از میانگین وزنی آنها، داده‌های ورودی مدل به‌دست ‌آمد. با ایجاد همبستگی بین میانگین وزنی پارامترهای هواشناسی و داده‌های مصرف، پارامترهای مؤثر مدل انتخاب شدند. پارامترهای مؤثر انتخاب شده شامل دمای متوسط روزانه، رطوبت نسبی، مصرف روزانه یک روز قبل تا مصرف روزانه یک هفته قبل (هفت روز) و مصرف روزانه یک سال قبل بودند. در این مقاله از شبکه‌های عصبی مصنوعی پرسپترون سه لایه با خروجی خطی و غیرخطی، مدل پرسپترون چهار لایه با خروجی غیرخطی و مدل RBF استفاده شد. مقایسه نتایج مدل‌ها با همدیگر و با نتایج مدل‌های نروفازی و روشهای سری زمانی ساخته شده در تحقیقات دیگر، نشان می‌دهد که مدل‌های شبکه عصبی از قابلیت بالایی برای مدل‌سازی تقاضای روزانه آب شهری برخوردارند. در این میان، مدل پرسپترون سه لایه با خروجی غیرخطی، دقت بالاتری دارد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی تقاضای روزانه آب شهری با استفاده از شبکه های عصبی مصنوعی، مطالعه موردی: شهر تهران

پیش بینی تقاضای آب در سیستم های آبرسانی و توزیع آب، با توجه به کمک شایانی که می تواند به مدیران این مجموعه ها برای مدیریت بحران (حداقل و حداکثر مصرف) داشته باشد، از اهمیت بالایی برخودار است. پیچیدگی و تأثیر عوامل و پارامترهای مختلف بر میزان تقاضای آب در این سیستم ها، سبب گردیده است که روشهای تحلیلی و ریاضی کارایی لازم را در این زمینه نداشته باشند. در این مقاله روش شبکه های عصبی مصنوعی برای برآو...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...

full text

توسعۀ یک مدل خبره برای پیش بینی تقاضای آب شهری با استفاده از شبکۀ عصبی مصنوعی، نمونه موردی شهر ایلام

مدیریت و تأمین آب شهری، همواره یکی از دغدغه های اصلی مدیران و برنامه ریزان شهری بوده است. شناخت تقاضای آب شهری و عوامل مؤثر بر آن، از مولفه های مهم در مدیریت و کنترل مصرف آب شهری محسوب می شود. در تحقیق حاضر مدلی خبره برای پیش بینی تقاضای آب شهری ایلام با استفاده از شبکۀ عصبی مصنوعی توسعه یافته است. مدل خبره، مبتنی بر عوامل مؤثری است که از درآمد سالانه ( x1)، ناحیه مصرف(x2)...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 1

pages  84- 95

publication date 2010-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023